If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x+35x=0
We add all the numbers together, and all the variables
x^2+49x=0
a = 1; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·1·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*1}=\frac{-98}{2} =-49 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*1}=\frac{0}{2} =0 $
| 8x-2-5x+7=3x+2 | | 2+3x=17-2 | | 2=a-2 | | x+28=6x | | -34-(-8)=x/4 | | x3+3x2−4x−12=0 | | -10=-5/6y | | 2m+5=45 | | 36=5x=11x | | 4/35=h/45 | | 7q=24 | | X+1=1/2x+8 | | -4g=-9-4g | | 60=-12p | | 4.6x−8.5=1.3x+1.4 | | 19+3y-4=14y-9-5y | | X-8x-(x-4)=4(x-3) | | 4x+4(x-2)=9×+2 | | -5p-7=-5p | | 1/8m=-5 | | 11y-12=10y-15 | | (2x)+(3x+12)=180 | | 5x-1=10x-4-5x-1 | | -7x-1=-9-17 | | w+1/10=13/20 | | m+6m=5m | | x°2-4x-45=0 | | w+2/7=9/14 | | 21=-3/8w | | 19x+23-7x=68 | | m/5+10=12 | | 2(x+3)+6=25 |